
c 

AERO-ASTRONAUTICS R E P O R T  NO. 23 

TWO-DIMENSIONAL, POWER-LAW W IP GS 
OF MAXIMUM LIFT-TO-DRAG RATIO IN HYPERSONfC FLOW 

A N G E L 0  MlELE and WILLIAM L .  WILSON 

GPO PRICE 8- 

RICE UNIVERSITY 

1966 



. 
1 

~~ ~ 

AAR- 23 

TWO- DlMENSIONAL,POWER- LAW WINGS 

OF MAXIMUM LIFT-TO-DRAG RATIO IN HYPERSONIC FLOW(+) 

bY 

ANGEL0 MIELE("*) and WILLIAM L. WILSON (***) 

SUMMARY 

The problem of maximizing the lift-to-drag ratio of a slender, flat-top, hypersonic 

and the skin-friction coefficient is constant. Direct methods are employed, and the 

analysis is confined to the class of two-dimensional wings whose chordwise contour 

is a power law. 
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First ,  unconstrained configurations are considered, and the combination of power 

law exponent and thickness ratio maximizing the lift-to-drag ratio is determined. For  

- 3  a friction coefficient C = 10 , the maximum lift-to-drag ratio is E = 5.29 and corresponds 
f 

to  a wedge of thickness ratio I- = 0.126. 

Next, constrained configurations are considered, that is, conditions are imposed 

on the length, the thickness, the enclosed area, and the position of the center of pressure.  

For each combination of constraints, an appropriate similarity parameter is introduced, 

and the optimum power law exponent, thickness ratio, and lift-to-drag ratio are determined 

as functions of the similarity parameter. 
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1 .  INTRODUCTION 

In Ref. 1, the basic theory of slender, flat-top, affine wings in the hypersonic 

regime was formulated under the assumptions that the pressure distribution is Newtonian 

and the skin-friction coefficient is constant. Analytical expressions were derived 

relating the drag, the lift, and the lift-to-drag ratio to the geometry of the configuration, 

Chzt is,  le chcrdwise z ~ d  spmx~ise colltnlirs nf the affine wing. In R e f .  2, two comple- 

mentary variational problems were formulated, that of optimizing the chordwise contour 

and that of optimizing the spanwise contour and the chord distribution, the criterion of 

optimization being the lift-to-drag ratio. The existence of similar solutions was 

investigated, and it was concluded that (1) the optimum chordwise contour of a wing of 

arbi t rary spanwise contour and chord distribution can be determined from the known 

optimum chordwise contour of a wing of constant trailing edge thickness and constant 

chord and (2) the optimum spanwise contour and chord distribution of a wing of arbitrary 

chordwise contour can be determined from the known optimum spanwise contour and 

chord distribution of a wing of linear chordwise thickness distribution. 
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The next s tep is to  determine the extremal properties of these reference wings. 

H e r e ,  a two-dimensional wing is considered, and its chordwise contour is determined for  

given constraints imposed on the length, the thickness, the enclosed area, and the position 

of the center  of pressure.  Direct methods are employed, and the analysis is confined to  

the class of power law contours. In a subsequent report (Ref. 3),  this limitation is removed, 

and the chordwise contour is determined with the indirect methods of the calculus of variations. 

The hypotheses employed are as follows: (a) the wing is two-dimensional: (b) the 

upper surface is flat; (c) the free-stream velocity is parallel to the plane of the flat top 

and is perpendicular to  the base plane; (d) the pressure coefficient is twice the cosine 

squared of the angle formed by the free-stream velocity and the normal to  each surface 

element; (e) the skin-friction coefficient is constant; (f) the contribution of the tangential 

forces to  the I& is negligible with respect to the contribution of the normal forces; (g) the 

wing is slender in the chordwise sense; and (h) the  chordwise contour is represented by 

a power law. 
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2. - FUNDAMENTAL EQUATIONS 

In order to relate the drag, the lift, and the pitching moment of a two-dimensional 

wing to its geometry, we define the following Cartesian coordinate system Oxz (Fig. 1): 

the origin 0 is the leading edge; the x-axis is identical with the free-stream direction 

and positive toward the trailing edge; and the z-axis is perpendicular to  the x-axis and 

positive downward. 

If the hypotheses (a) through (g) are invoked and if the lower surface is represented 

by the relationship 

z = z(x) 

the drag D, the lift L, and the pitching moment M per  unit span can be written as 

(Ref. 1 and 2) 

L/q = 2 G2 dx 

where q is the free-stream dynamic pressure and 2 the derivative dz/dx. In accordance 
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with hypothesis (h),we specialize the chordwise contour (1) to the power law 

z/t = (x/Qn 

in which n is an undetermined exponent and t is the base thickness. Consequently, 

Eqs .(2) become 

L/q = .e.r 2 f2 

where 

7 = t/4, 

is the thickness ratio and where 

3 f,(n) = 2n /(3n - 2) 

2 f,(n) = 2n /(2n - 1)  

f3(n) = n 

These equations are valid for n > 2/3 only, owing t o  the fact that the pressure  d rag  

cannot he negative. 

(4) 

(5) 
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Once the drag, the lift and the pitching moment are known, certain derived 

quantities can be calculated. They are the lift-to-drag ratio E and the nondimensional 

distance 5 of the center of pressure from the apex. These quantities are defined by 
0 

E = L/D = x  0 /& = M/LA (7) 

and, because of Eqs. (4), can be rewritten as 

Clearly, the lift-to-drag ratio depends on both the thickness ratio and the power law 

exponent, while the position of the center of pressure depends on the power law exponent 

only. 

Finally, the area enclosed by the profile of a flat-topJ two-dimensional wing is given 

and reduces to 

2 A =  t T f 4  

with 

f4(n) = l / (n  -t 1) 

if the chordwise contour is represented by a power law. 



8 AAR-23 , 

3. UNCONSTRAINED CONFIGURATION 

The first  step in the analysis is to determine the maximum lift-to-drag ratio of 

a configuration which is unconstrained geometrically and aerodynamically. According to  

Eq. (8- l) ,  the lift-to-drag ratio depends on both the thickness ratio and the power law 

exponent, that is, it has the form E = E(r,n). Therefore, the optimum values of T and 

n are determined by the simultaneous relationships 

E = O  , E = O  
T n 

in which the subscripts denote partial derivatives. These relationships can be written 

explicitly as 

T 3 f l  - 4Cf = 0 

* 3  3 .  
2 f (7. f l  + 2Cf) - T f2fl = 0 

with the dot sign denoting a derivative with respect t o  n. From Eq. (13-1), it appears 

that the optimum thickness ratio is such that the skm-friction drag is one-third of the 

total drag. Furthermore, upon eliminating the thickness ratio from Eqs . (13), we obtain 

the relationship 

2g1 - 3g2 = 0 
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where 

On account of the definitions (6-1) and (6-2), we see that Eq. (14) is solved by 

which means that the optimum chordwise contour is that of a wedge. With this under- 

standing, the thickness ratio (13-1) and the lift-to-drag ratio (8-1) become 

= 2/3 2/2 3- 2 0.529 
ECf 

Equation (17-2) represents the upper limit to the lift-to-drag ratio which can be obtained 

with a two-dimensional, flat-top configuration subjected to  a flow parallel to  the flat top. 

Should the configuration be required to  satisfy a certain number of geometric and/or 

aerodynamic constraints, a loss in the lift-to-drag ratio would occur with respect to that 

predicted by Eq. (17-2). 
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4. GIVEN CENTER O F  PRESSURE 

To prescribe the nondimensional distance of the center of pressure from the apex 

is equivalent to  prescribing the power law exponent in accordance with Eq. (8-2). 

Therefore, the lift-to-drag ratio can be maximized with respect to the thickness ratio 

only, and the relevant optimum conditions is represented by Eq. (12-1) implicitly or  

Eq. (13- 1) explicitly. Because of Eq. (13- l), the optimum thickness ratio is given by 

- 1/3 1/3 
‘‘f = ( 4 4  

and the associated lift-to-drag ratio is 

The parametric equations (8-2), (18), and (19) admit solutions of the form 

(20 ) 
- 1/3 1 /3- 

n = PE0) 8 7Cf = Q ( S 0 )  9 ECf -R( to )  

which are plotted in  Figs. 2 through 4. For 5, = 1/2, the chordwise contour is that of a 

wedge, and the maximum lift-to-drag ratio reaches the upper limit represented by 

Eq. (17-2). For any other value of 5 lower values of the lift-to-drag ratio are obtained 
0’ 

as shown in Fig. 4. 
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5. GIVEN THICKNESS AND LENGTH 

To prescribe the thickness and the length is equivalent to prescribing the thickness 

ratio T in  accordance with the definition (5). Therefore, the lift-to-drag ratio (8-1) can 

be maximized with respect t o  the power law exponent only, and the relevant optimum 

condition is represented by Eq. (12-2) implicitly or  m. (13-2) explicitly. Because of 

Eq. (13-2), the optimum power law exponent satisfies the relationship 

The associated lift-to-drag ratio is given by 

(*) The parametric equations (21) and (22) admit solutions of the form 

1/3 = R(T Cf W 3 )  n = P ( T C ~  W 3 )  3 ECf 

AAR-23 

5 3.830 a d  single-valued for 

-'I3 2 0.830. In the former case, there is one relative minimum solution and two 

- 1/3 
f 

("' The functions (23) are triple-valued €or 4 C: 

c, 
I 

relative 

solution 

in  Figs. 

maximum solutions. Among the latter, one must determine the absolute maximum 

by direct comparison of the lift- to- drag ratio. This maximum solution is plotted 

5 a n d 6 .  
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which are plotted in Figs. 5 and 6. If the thickness-length parameter is smaller than 

0.825, the configuration is concave. If the thickness-length parameter is larger than 

= 1.26, has the lift-to-drag ratio 
f 0.825, the configuration is a wedge which, for T C 

1/3 =0.529. 
ECf 
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6 .  GIVEN ENCLOSED AREA AND LENGTH - 

If the enclosed area and the length are given, it is convenient to rewrite Eq. (10) in 

the form 

2 A/& = 7 f  4 

The lift-to-drag ratio (8-1) is to be maximized with respect to the cornhinations of 7 

and n which ensure the constancy of the right-hand side of Eq. (24). In accordance with 

Lagrange multiplier theory, we introduce an undetermined constant X and define the 

fundamental function 

F =  E+XTf4 

I 

Then, the optimum conditions a r e  
i 

which are equivalent to 

E +Xf = O  , E + X r i 4 = O  
T 4  n - 

and, upon elimination of the Lagrange multiplier, imply that 

- E  = O  
Tg4EI- n 
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where 

= f  /f g4 4 4 (29) I 

In the light of Eq. (8-1), Eq. (28) can be rewritten as 

The associated lift-to-drag ratio and area-length parameter are given by 

The parametric equations (30) and (31) admit solutions of the form (* 1 

n =P(At - 2  Cf - l j 3 )  9 7Cf -1/3- - Q(A4 -2 Cf -1/3 ) , ECf1j3 = R(A.L2Cf-ll3) (32) 

which are plotted in Figs. 7 through 9. When the area-length parameter  has the value 

-~ 
-2 - (") The functions (32) a r e  triple-valued for A t  C 'I3< 0.169 and single-valued 

-2 -1/3 f 
for  A& Cf 

two relative maximum solutions. Among the latter, one must determine the absolute 

maximum solution by direct comparison of the lift-to-drag rat io .  This maximum solution 
is plotted in Figs. 7 through 9. 

2 0.169. In the former case, there is one relative minimum solution and 
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, -1/3 
1 

I 

= 1.26 and a f 0.630, the configuration is a wedge with a thickness ratio T C 

lift-to-drag ratio EC 1/3 = 0.529. For  larger values of the area-length parameter, f 

I the configuration is convex, and for  smaller values, it is concave. 



AAR-23 t 16 

7 .  GIVEN ENCLOSED AREA AND THICKNESS 

If the enclosed area and the thickness are given, it is convenient to  rewrite Eq. (10) 

in the form 

(33) 
2 

A/t = f4/,' 

The  lift-to-drag ratio (8-1) is to  be maximized with respect to the combinations of T and 

n which ensure the constancy of the right-hand side of Eq. (33). In accordance with 

Lagrange multiplier theory, we introduce an undetermined constant X and define the 

fundamental function 

F = E f X f 4 / 7  (34) 

Then, the optimum conditions are 

F = O  , F = O  
T n (35) 

which are equivalent to 

and, upon elimination of the Lagrange multiplier, imply that 

+ E  = O  
T ~ 4 E 7  n 
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In the light of Eq. (8-1), Eq. (37) can be rewritten as 

The associated lift-to-drag ratio and area-thickness parameter are given by 

I 

I 
I 

i 

The parametric equations (38) and (39) admit solutions of the form 

(40) 
-2 1/3 - 1/3 -2 1/3 R(At -2 Cf 1/3 ) = Q W  Cf ) a ECf f 

n=P(At  Cf ) , TC 

which are plotted in Figs. 10 through 12. When the area-thiclmess parameter has the 

= 1.26 and a f 
value 0.397, the configuration is a wedge, with a thickness ratio TC 

lift-to-drag ratio EC 1/3 = 0.529. For  larger values of the area-thickness parameter, 
f 

thc czriigxatlon is convex, and for  smaller values, it is concave. 
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8 .  - DISCUSSION AND CONCLUSIONS 

In the previous sections, the problem of maximizing the lift-to-drag ratio of a 

slender, flat-top, hypersonic wing is investigated under the assumptions that the pressure 

distribution is Newtonian and the skin-friction coefficient is constant. Direct methods 

are employed, and the analysis is confined to the class of two-dimensional wings whose 

chordwise cmtour is a power law. 

First , unconstrained configurations are considered, and the combination of power 

law exponent and thickness ratio maximizing the lift-to-drag ratio is determined. For 

- 3  
a friction coefficient C = 10 , the maximum lift-to-drag ratio is E = 5.29 and corresponds f 

to a wedge of thickness ratio T = 0.126. 

Next, constrained Configurations are considered, that is , given conditions are 

imposed on thc length, the thickness, the enclosed area, and the position of the center of 

pressure.  For each combination of constraints , an appropriate similarity parameter is 

introduced, and the optimum power law exponent, thickness ratio, and lift-to-drag ratio 

are determined as  functions of the similarity parameter.  The lift-to-drag ratio of a 
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constrained configuration is smaller than that of the optimum unconstrained configuration; 

however, for a particular value of the similarity parameter, equality is achieved. 

While the chordwise contour is that of a wedge for an unconstrained configuration, 

it can be either convex o r  concave for constrained configurations, depending on the value 

of the similarity parameter. Since the Newtonian pressure law has been verified experi- 

mentally for convex configurations only, the results pertaining t o  concave configurations 

a r e  merely indicative of qualitative trends. 

Finally, it is of interest to compare the present lift-to-drag ratios with those 

characteristic of drag- optimized, flat-top configurations. The analysis is omitted for 

the sake of brevity,since it involves only a slight modification of that presented in Ref. 4. 

As expected, the lift-to-drag ratio of a minimum drag configuration is lower than that of 

a maximum lift-to-drag ratio configuration (see Figs. 5 through 12). 
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